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Abstract. The following algorithm partitions road networks surpris-
ingly well: (i) sort the vertices by longitude (or latitude, or some linear
combination) and (ii) compute the maximum flow from the first k nodes
(forming the source) to the last k nodes (forming the sink). Return the
corresponding minimum cut as an edge separator (or recurse until the
resulting subgraphs are sufficiently small).

1 Introduction

Graph Partitioning is the well-studied problem of cutting a graph into disjoint re-
gions of approximately equal size while minimizing the number of edges between
regions. An example partition of a road network is shown as Fig. 1.

Fig. 1. Recursive bisection using our separator algorithm Inertial Flow (with bal-
ance 1/4) for the road network of the United States (24M nodes, 29M edges) into
27 regions by cutting a total of 1,413 edges (0.005%). The largest region contains less
than 6% of the original graph.

Delling, Goldberg, Razenshteyn, and Werneck [DGRW11] discovered that
road networks have remarkably small separators. Prior to our work, their patented
method called PUNCH appeared to be the only one capable of efficiently comput-
ing these separators (Buffoon [SS12], another high-quality partitioner for road
networks, uses PUNCH as a subroutine).



1.1 Problem Statement

Given a graph G = (V,E), a Graph Partition is a partition of the vertex set V
into disjoint subsets V0, V1, . . . Vk−1 such that the regions (Vi, Ei) (subgraph
induced by Vi) are of roughly equal size, and for all Vi, Vj (i 6= j) the set of
edges between Vi and Vj (denoted by E(Vi, Vj)) is as small as possible. A main
challenge of graph partitioning is the combined objective of minimizing the cut
size while keeping good balance. Various objective functions combine the two
quantities. Problem variants include balanced k–partitioning, where partitions
must satisfy ∀i : |Vi| 6 (1 + ε) |V | /k for some imbalance parameter ε > 0, or
the relaxed (and significantly easier) variant, where only ∀i : |Vi| 6 r for some
region size constraint r (as considered in this paper).

One way of obtaining such a partition is by cutting G into two pieces V0, V1

and then recursing on each subgraph V0, V1. The recursion ends when the result-
ing subgraphs are sufficiently small. For these bisections, there are also various
objective functions.

Definition 1 (Cuts and Balanced Cuts). Given a graph G = (V,E), a cut
is a partition of V into two disjoint subsets V0, V1. A b–balanced cut (for any
0 < b 6 1/2) is a cut such that |Vi| > bb · |V |c for both i ∈ {0, 1}.

At each level of the recursion, the objective is to find a b–balanced cut (for
some b, say b = 1/4) that minimizes the number of cut edges, i.e. min |E(V0, V1)|,
where E(V0, V1) := {(u, v) ∈ E : u ∈ V0, v ∈ V1}.

Other well-known objective functions for cuts include the minimum st cut
and the sparsest cut. A minimum st cut is a cut minimizing |E(V0, V1)| with
the condition that s and t are separated, i.e., s ∈ V0 and t ∈ V1 (no balance
requirements). It can be found efficiently using maximum flow algorithms [GR98,
BK04, GHK+11, Mad13]. A sparsest cut is a cut minimizing |E(V0, V1)| /(|V0| ·
|V1|). Sparsest cuts are hard even to approximate [KV05, CKK+06].

1.2 Related Work

Theory. Various approximation algorithms for sparsest cut use maximum flow
computations [KRV09, AK07, OSVV08, She09]. Roughly speaking, these algo-
rithms iteratively refine an embedding of V by choosing source s and sink t at ex-
tremal points (of the embedding), computing st flow, followed by re-arranging V .
A simplified statement of these results is that a poly-logarithmic number of
carefully chosen maximum-flow computations provides a logarithmic approxi-
mation for sparsest cut (details in the corresponding papers). Previously, Lang
and Rao [LR04] and Andersen and Lang [AL08] also showed how to improve
cuts using maximum flow. Bui, Chaudhuri, Leighton, and Sipser [BCLS87] used
maximum flow to compute bisections of regular graphs.

Some graphs are guaranteed to have small balanced cuts. For example, any
planar, bounded-genus, or minor-free graph on n nodes has a balanced separator
of size O(

√
n) [Ung51, LT79, Dji85, GHT84, And86, AST90], and recursive ap-

plication yields partitions [LT79, Fre87, HKRS97, vWZA13, KMS13]. Partitions
obtained by recursive bisection may be far from optimal though [ST97].



Practice. The literature on graph partitioning is vast, see e.g. [BMSW13, BMS+13]
and references therein. In this brief review, we focus on recent work on parti-
tioning road networks. Delling, Goldberg, Razenshteyn, and Werneck [DGRW11]
introduce PUNCH, which first computes candidate cuts using maximum flows
between sources and sinks chosen as follows: for a node v ∈ V , all nodes within
distance< r form the source, and all nodes at distance> R form the sink (for two
parameters r < R; distance can be measured in terms of BFS, shortest-path,
or rank distance). These candidate cuts are then aggregated in various ways
to form the final partition. Sanders and Schulz [SS11, SS12, SS13] contribute
KaFFPa[E] and KaHIP (following earlier partitioners such as Ka{SPar,PPA}),
all general-purpose partitioners, with a variant called Buffoon optimized for road
networks. Their methods are based on the multi-level graph partitioning frame-
work, where the input graph is first contracted, followed by a partitioning step
on the smaller graph, and a refinement step to obtain a partition of the original
graph. In KaFFPa, one of the refinement steps is called adaptive flow iterations,
which enforces a balance constraint and computes maximum flow with source
and sink chosen as BFS balls in two adjacent regions. Similar refinements using
maximum flows had also been used by Boykov, Veksler, and Zabih [BVZ01].

Applications. Road network partitions can be used for applications such as
shortest-path queries [Som14] or data distribution [KLSV10]. In particular, the
performance of separator-based shortest-path algorithms [Fre87, Dji96, HKRS97,
FR06, HSW08, DHM+09, KKS11, MS12, DGPW13] depends on the size of the
separator. Most prominently, Delling, Goldberg, Pajor, and Werneck [DGPW13]
recently demonstrated that separator-based methods built upon a quality parti-
tion (such as those described in their joint work with Razenshteyn [DGRW11])
are highly practical. Their method recursively partitions the graph into a multi-
level partition and then, for each region and level, precomputes matrices repre-
senting shortest-path costs between boundary nodes. For each region, memory
requirements are therefore proportional to the square of the number of boundary
nodes, which makes the quality of the partition particularly important. Partition-
ing is the most time-consuming step in their preprocessing algorithm (approxi-
mately 10 minutes to compute a multi-level partition for the US road network).
Dibbelt, Strasser, and Wagner [DSW14] compute metric-independent Contrac-
tion Hierarchies based on nested dissection, which in turn is based on recursive
bisection (corresponding theory in [BCRW13]). Finding good bisections is the
most time-consuming step in their preprocessing algorithm.

1.3 Contribution

Our main contribution is a simple and efficient method to find sparse balanced
cuts in embedded graphs such as road networks. The method, which we call
Inertial Flow, uses the embedding, initially sorts nodes geometrically (like the
well-known Inertial Partitioning), and then computes a maximum flow. The
corresponding minimum cut is used as the separator. Inertial Flow is straight-
forward to implement, yet its partitions are reasonably good. Our experiments



using such a straightforward implementation demonstrate that it is competi-
tive with the state-of-the-art partitioner PUNCH [DGRW11]. If the Natural Cut
Heuristic is interpreted as the heart of PUNCH then the objective of this paper
is to describe a new heart, and not the effects of its transplantation. We specu-
late that, in combination with the assembly phase of PUNCH or Buffoon [SS12],
partitions might improve further (particularly in terms of balance).

In addition to simplicity, another advantage of recursive bisection is that,
after computing the separator tree once, it contains the information for an entire
multi-level partition (see e.g. [KMS13]).

As discussed in the section on related work, various partitioners employ a
maximum-flow algorithm as an important subroutine. Their main differentiator
is the choice of source and sink. On one hand, when terminals consist of too
few nodes, minimum cuts may be highly unbalanced. On the other hand, when
terminals consist of too many nodes, the best cuts may be violated by the ini-
tial source/sink assignment. Many methods use BFS balls to assign terminals,
where the choice of radii is particularly delicate: obviously, balls must not inter-
sect, but they should also be reasonably far apart. Such kind of tuning is fairly
straightforward for our method, as there is just the balance parameter b to be
configured. State-of-the-art theoretical algorithms for sparsest cut first embed
the graph and then refine using maximum flow. The main observation leading
to our method is that a road network’s embedding (which is typically provided
as part of the input) may be sufficiently good to serve as the initial embedding
in an analogous algorithm.

2 Inertial Flow

We present an efficient heuristic to find b–balanced cuts in road networks. For
the sake of exposition, let us consider a simplified road network, defined as an
undirected graph G = (V,E) with an embedding f : V ↪→ R2. We may assume
that G is connected, as typically partitioning algorithms are applied to each
connected component independently. Our method is rather simple as it merely
applies two standard primitives: sorting and maximum flow. (The well-known
Inertial Partitioning uses sorting, followed by sweeping, hence the name of our
method.)

1. Pick a line ` ∈ R2 and orthogonally project V onto `
(more precisely, for each vertex v, project its point in the embedding f(v)
onto `).

2. Sort V by order of appearance on ` (ties broken arbitrarily but consistently).
3. Let the first bb · |V |c vertices (in projection order) be the source s, and

let the last bb · |V |c vertices be the sink t.
4. Compute a maximum flow between source s and sink t.
5. Return a corresponding minimum st cut.



Key Properties

– By choice of s and t, all minimum st cuts are b–balanced.
– The running time is bounded by the time required to sort V plus the time

required to compute one maximum flow inG. Computing the entire separator
tree (recursive bisection) requires time proportional to sort plus log1/(1−b) |V |
times flow.

– A basic implementation using standard libraries is straightforward.

Choice of `

The quality of the cut depends on the line ` ∈ R2 chosen in the first step
of the algorithm. Obvious choices include random lines as well as simple fixed
directions such as horizontal, vertical, or diagonal. A natural heuristic is then
to try multiple lines and increasing balance values and return the best cut (for
some objective function that may involve balance and cut size).

Let us demonstrate the effect of ` on the cut using the road network of New
York3 as an example. The cut sizes range from 5 (best) to 44 edges (see Fig. 2).
The choice of source and sink forces the cut to be in a corridor that, for b = 1/4,
contains half the graph. If the source/sink assignment violates a sparse cut and
the corridor is relatively dense, then Inertial Flow finds a suboptimal cut.

Fig. 2. The road network of New York (264K nodes) cut with balance 1/4 and four
different line values. From left to right: horizontal (5 edges cut), vertical (44 edges
cut), and diagonal (35 and 25 edges cut, respectively). Inertial Flow using horizontal
sorting provides the best cut, both visually (along the Hudson) as well as in terms of
the number of cut edges. The other sort orders yield comparatively large cuts as the
minimum balance criterion forces unfortunate source/sink assignments violating the
Hudson cut. Note that, compared to a typical worst-case guarantee on the order of√

n ≈ 514, all cuts are smaller by at least an order of magnitude.

3 The NY network contains 264K nodes and 734K arcs (interpreted as 367K undirected
edges). All US road networks used for experiments in this paper can be downloaded
from http://www.dis.uniroma1.it/challenge9/download.shtml



3 Experiments

3.1 Setup

The main datasets we consider are the road networks of the United States and
Europe, respectively. The USA graph (as used for the 9th DIMACS Implemen-
tation Challenge on Shortest Paths [DGJ08]) has 24M nodes and 58M directed
arcs, which are typically interpreted as 29M undirected edges. The EUR graph
(as made available by PTV AG, and also used in [DGJ08]) has 18M nodes and
21M edges (42M arcs).

The method used for comparison is PUNCH [DGRW11]. Note that PUNCH
does not read the embedding, so Inertial Flow is given an unfair advantage. A
main convenience of Inertial Flow as compared to PUNCH (and Buffoon [SS12])
is that it is straightforward to implement.

Our experiments are meant as a proof of concept, and we use a vanilla im-
plementation (in C++) without any additional heuristics. For this paper, our
focus is not on running times, and we also refrain from tuning parameters to
experimental data. Unless indicated otherwise, balance is set to 1/4, the lines are
chosen to be horizontal, vertical, and diagonal (` ∈ {(1, 0), (0, 1), (1, 1), (−1, 1)}),
and the objective function is simply to minimize the number of cut edges. The
main subroutines employed are std::sort and maximum flow using Dinic’s al-
gorithm (augmenting paths, in the unit-capacity case computed by breadth-first
search) [Din70]. Our implementation is parallel in the most obvious ways: sepa-
rators for each line ` are computed by separate threads (with cross-notification
of minimum cut upper bounds), and recursive calls are handled by a thread pool.
For recursive bisections, we run 16 threads on two 2.20GHz Intel Xeon CPUs
with 8 cores each. We encourage interested readers to combine Inertial Flow
with other heuristics and/or to write more efficient implementations.

3.2 Results

Graph size vs. separator size and boundary size. Worst-case bounds for planar
graphs on n nodes (and more general graph classes) guarantee the existence of
a 1/3–balanced cut/separator of size O(

√
n) [LT79]. Recursive separation yields

a partition into O(n/r) regions of size 6 r with total boundary size O(n/
√
r).

With some more work one can obtain an r–division [Fre87], where each region has
worst-case boundary O(

√
r). Road networks appear to have significantly smaller

separators: Delling, Goldberg, Razenshteyn, and Werneck [DGRW11] compare
the average boundary size to 3

√
r instead (confirmed later by Dibbelt, Strasser,

and Wagner [DSW14]). We provide plots for region size vs. total boundary size
in Fig. 3. For specific numbers on region size vs. total boundary size, see Table 1
and Table 2.

Running Time. As mentioned above, our main focus is not on running time.
Our implementation computes multi-level partitions for USA and EUR in minutes.
Specific numbers are provided in Tables 1, 2, and 3. Note that, as expected, the



initial cuts on the largest graphs are the most expensive ones. Subsequent cuts
operate on smaller graphs and, by maintaining nodes in sorted order(s), do not
require sorting the nodes again. For example, cutting USA into 2 regions requires
81 seconds (Table 3, b = 1/4). Recursive bisection into 6K regions takes only
roughly twice as long (165.8 seconds, Table 2). Using this recursive bisection tree,
reading off an entire multi-level partition is straightforward (see e.g. [KMS13]).
By contrast, the Natural Cut Heuristic of PUNCH [DGRW11] depends on the
target region size and is run separately for each level.

3.3 Comparison

Comparing partitions is not straightforward [BMS+14]. We compare against
various partitions reported for PUNCH in Table 1 and observe that PUNCH
partitions are significantly more balanced. For example, when partitioning USA
into 27 regions as in Fig. 1, Inertial Flow cuts 1,413 edges with maximum region
size 1.4M, while PUNCH cuts only 1,404 edges and obtains maximum region size
1M (220). While recursive bisection with Inertial Flow typically uses around 50%
more regions than a perfectly balanced partition, PUNCH reportedly needs only
about 15% more regions. For most partition granularities, the average numbers
of cut edges per region are comparable.

We also compare our bisections against the optimal ones, obtained by an
efficient algorithm of Delling, Fleischman, Goldberg, Razenshteyn, and Wer-
neck [DFG+14]. Their algorithm guarantees optimal bisections for fairly large
graphs, so comparing our method without any guarantees on optimality (only
balance and running time have worst-case bounds) against their algorithm is
not fair. However, we believe that the value of an optimal bisection adds an
interesting perspective on cut quality (see Table 3).

Let us restate that the main advantage of Inertial Flow over PUNCH is
simplicity. Another advantage is that multi-level partitions can be computed
faster. As cut sizes are comparable, these advantages come at the cost of worse
balance. Depending on the application, if better balance is required, a post-
processing step (as in PUNCH or Buffoon) may further improve partitions.
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Graph
PUNCH Inertial Flow, fixed r Inertial Flow, target regions

r regions boundary time regions boundary time r boundary time

Europe

1,024 20,129 168,767 79.7 27,129 208,280 209.5 1,378 171,064 216.0
4,096 5,000 69,304 62.5 6,808 84,291 211.0 5,536 69,016 204.5

16,384 1,248 28,448 61.6 1,708 34,839 214.0 22,367 28,236 194.7
65,536 314 11,403 80.5 431 14,054 218.4 88,856 11,317 199.3

262,144 81 4,194 106.1 106 5,275 210.5 349,449 4,246 209.2
1,048,576 22 1,464 147.9 28 2,036 213.9 1,299,633 1,694 202.8
4,194,304 6 371 196.6 7 573 176.3 4,861,623 461 171.8

USA

1,024 26,725 222,636 104.6 36,267 274,756 246.9 1,389 223,531 186.6
4,096 6,643 87,762 79.9 9,000 107,170 173.2 5,570 87,193 181.8

16,384 1,661 34,345 75.0 2,233 41,782 157.7 22,310 34,138 172.0
65,536 418 12,767 89.9 563 15,862 166.0 87,960 12,971 168.5

262,144 109 4,556 103.3 140 5,578 163.0 336,843 4,557 166.6
1,048,576 27 1,504 117.6 33 1,716 148.5 1,407,053 1,413 148.3
4,194,304 7 383 138.7 8 478 128.4 4,338,122 388 128.7

Table 1. An attempt at comparing partitions obtained by PUNCH and recursive bi-
section using Inertial Flow. Values for PUNCH were extracted from [DGRW11, Table 1
(average values)]. Each PUNCH average is compared to two Inertial Flow partitions:
a partition with the same region-size constraint r, and a partition with the same num-
ber of regions. Center: when computing a partition with the same upper bounds for
the maximum region size r, PUNCH requires fewer regions; the average number of
cut edges per region is comparable. Right: when computing a partition with the same
number of regions, the two partitioners cut a similar number of edges (with some
PUNCH boundaries slightly smaller, particularly for Europe, and partitions more bal-
anced). The running times for PUNCH are fairly uniform; for recursive bisection, the
smaller r, the longer the computation. Note that a recursive bisection tree with regions
of size at most r also contains a partition for any r′ > r (enabling plots like Fig. 3
with thousands of r values), hence it also contains multi-level partitions. Using the
USA values in this table as an example, Inertial Flow simultaneously computes all
14 partitions (r = 4,338,122 through 210) in 4.1 minutes.
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Fig. 3. Average boundary sizes for partitions with various maximum region sizes r
(number of edges, logarithmic scale) for the BAY, CAL, and USA road networks, respec-
tively. Worst-case results (such as those for planar graphs) guarantee average boundary
sizes proportional to r1/2. Delling, Goldberg, Razenshteyn, and Werneck [DGRW11]
compare the average boundary size to r1/3.



CAL |V | = 1.89M USA |V | = 23.9M EUR |V | = 18.0M
d|V | /re regions boundary time regions boundary time regions boundary time

2 3 53 3.3 3 140 121.9 3 276 106.2
4 6 103 4.6 6 324 114.7 7 573 135.5
8 12 215 5.8 12 648 125.9 13 1,058 157.8

16 25 441 5.6 24 1,223 120.1 26 1,867 164.3
64 99 1,437 6.0 96 4,234 165.7 98 4,990 169.2

256 387 4,418 6.3 397 12,482 141.5 399 13,280 172.2
1,024 1,561 12,957 6.1 1,593 33,197 145.5 1,592 33,228 170.5
4,096 6,326 36,129 6.9 6,307 84,274 165.8 6,321 80,332 174.7

16,384 25,543 98,232 11.1 25,401 216,078 188.6 25,208 198,433 175.3

Table 2. Recursive bisection using Inertial Flow (balance 1/4) on the road networks of
California and Nevada (CAL), the United States (USA), and Europe (EUR), respectively,
for various values of granularity (maximum region size r). Total region boundaries
(cut sizes) reported correspond to the number of edges. Note that these partitions
typically have around 50% more regions than necessary due to imperfect balance.
Time (in seconds) corresponds to the time of recursive bisection (in particular, reading
the graph and its embedding from disk is not included) as required by 16 threads (one
bisection occupies 4 threads, one per slope). The variance in running times is rather
substantial: even though we report the median among 11 consecutive runs, that median
running time, e.g., for USA with d|V | /re = 64 is slower than that for 1,024 even though
only a relatively small subset of cuts is computed. The initial cuts of comparably large
(sub-)graphs are the most expensive ones.

Perfect b = 2/5 b = 1/3 b = 1/4 b = 1/5
Graph |V | Cut Time Cut Bal. Time Cut Bal. Time Cut Bal. Time Cut Bal. Time

NY 264K 18 381 40 0.48 0.1 5 0.43 0.1 5 0.43 0.1 5 0.43 0.1
BAY 321K 18 248 28 0.48 0.2 15 0.46 0.1 12 0.46 0.2 12 0.46 0.2
COL 436K 29 2,164 27 0.43 0.2 20 0.36 0.2 14 0.32 0.3 12 0.29 0.3
FLA 1.1M 25 1,640 28 0.42 0.6 22 0.40 0.7 17 0.29 0.9 15 0.27 1.0
NW 1.2M 18 463 24 0.49 0.7 17 0.50 0.6 17 0.50 0.7 17 0.50 0.9
NE 1.5M 24 751 20 0.49 1.3 20 0.49 1.4 20 0.49 1.7 20 0.49 2.3
CAL 1.9M 32 2,658 29 0.49 2.0 29 0.47 2.4 27 0.30 2.2 26 0.30 2.5
EUR 18M NA NA 229 0.46 69.3 201 0.45 95.3 188 0.45 124.9 95 0.30 81.4
USA 24M NA NA 61 0.48 58.3 61 0.48 63.9 61 0.48 81.2 61 0.48 84.3

Table 3. Bisection of various road networks: perfectly balanced bisections were ob-
tained by Delling, Fleischman, Goldberg, Razenshteyn, and Werneck [DFG+14, Ta-
ble 4]. The balance of bisections found by Inertial Flow depends on the slope and
the parameter b and there is no guarantee on optimality. In this table, for each
b ∈ {1/5, 1/4, 1/3, 2/5} we provide the minimum number of cut edges among 4 slopes.
Balance is reported as the number of nodes in the smaller subgraph divided by the
total number of nodes. As in Table 2, times reported are for the bisection (in seconds).
When b is close to 1/2, good balance is guaranteed, but cut sizes may be significantly
higher, see e.g. NY at 40 edges for b = 2/5, which is more than double the size of an
optimal bisection. When accepting worse balance, cuts may be substantially smaller.
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