
Sandpile prediction on a tree in near linear time∗

Akshay Ramachandran† Aaron Schild‡

November 2, 2016

Abstract

In the sandpile model, we are given an undirected graph
G and an initial list of chip counts on each vertex of
G and we may fire degree(v) chips from any vertex v
to its neighbors. Doing chip moves either results in
a unique terminal configuration or recurs forever. On
many families of graphs – including trees – the problem
of computing the final configuration is P-complete [13]
and simulation can take as long as Θ(n3) time. We give
a O(n log5 n) time algorithm for trees that computes the
terminal configuration or shows that chip firing will not
terminate.

1 Introduction

The computational complexity of simulation has long
been of interest in physics, mathematics, and computer
science. This interest began with Turing completeness
[17], which has had a large impact on our understand-
ing of cellular automata like Conway’s Game of Life
[1]. Since the 1990s, researchers have been interested
in whether or not the output of a simulation can be
computed using a parallel algorithm [13, 14]. In partic-
ular, they have been interested in which simulations are
P-complete versus which ones are in NC.

In the past decade, with the introduction of larger
datasets, researchers have become interested in more
fine-grained notions of complexity. This has triggered
interest in computing the output of simulations more
efficiently using algorithms that are not necessarily par-
allelizable. This line of work started with shortcutting
random walks in order to compute random spanning
trees [11, 9].

We extend this line of work to the problem of
sandpile prediction. In this problem, we are given an
undirected graph with a nonnegative number of chips on
each vertex. If a vertex v has at least degree(v) chips,

∗Work done while both authors were students at University of

California, Berkeley
†University of Waterloo, Supported by David R Cheriton

Graduate Scholarship. a5ramachandran@uwaterloo.ca
‡University of California, Berkeley, Supported by NSF grants

CCF-1528174 and CCF-1535989. aschild@berkeley.edu

we may “fire” it, meaning that we may take degree(v)
chips from it and distribute one to each of its neighbors.
Firing vertices repeatedly either results in a terminal
configuration with no vertex having degree(v) chips on
it or continues forever and is recurrent. All valid orders
of firings reach the same terminal configuration [3]. We
want to find the terminal configuration if it exists or
output that firing never terminates.

Sandpile prediction is of wide interest in physics,
computer science, and mathematics, both for its beau-
tiful algebraic structure [2, 8] and for its relevance to
applications like load balancing [19] and derandomiza-
tion of models like internal diffusion-limited aggrega-
tion [4, 5]. The sandpile model is related to many other
models and physical phenomena, like the rotor-routing
model [18], avalanche models [6], and self-organized crit-
icality [15].

This interest in chip firing has extended to its com-
putational complexity as well. Approaches to comput-
ing the terminal configuration fall into two categories:

• Bounding the number of chip firings required to
reach the terminal configuration. This approach
applies to general graphs. [3, 8, 7]

• Bypassing simulation to compute the terminal con-
figuration more efficiently. This approach currently
only works for paths. [13, 9]

The first approach began with a paper of Bjorner,
Lovasz, and Shor [3] which showed that in a termi-
nating sequence there can be at most 2|V |N/λ2 fir-
ings, where N is the total number of chips and λ2 is
the smallest non-trivial eigenvalue of the graph Lapla-
cian. A better bound based on a random walk argu-
ment showed that the number of chip moves is at most
2N |E|Rmax [8], where Rmax is the maximum effective
resistance between any two nodes. This bound is often
as high as Ω(n3) on sparse graphs. Sandpile predic-
tion is P-complete on many classes of graphs, including
trees [7] and grids with dimension greater than 3 [13].
The second approach only works on paths, achieving
O(n log n) work algorithms with depths O(log3 n) [13]
and O(log2 n) [9] respectively.

1115 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

In this paper, we extend the second approach to
work for trees as well. Unlike the case of paths,
computing the terminal configuration of a tree is P-
complete, so we are unable to parallelize our algorithm.
This paper is the first speedup over simulation obtained
for sandpile prediction on a family of graphs for which
the problem is P-complete.

1.1 Preliminaries In this paper, all graphs are undi-
rected and unweighted. A graph G has vertex set V (G)
and edge set E(G). For any vertex v ∈ V (G), degree(v)
denotes the number of neighbors of v.

In the sandpile prediction problem, one is given an
undirected graph G and an initial configuration vector

σ0 ∈ ZV (G)
≥0 . We call the ordered pair (G, σ0) a sandpile

prediction instance. We can fire any vertex v with
σv ≥ degree(v), which changes σ in the following way:

σt+1
u ←


σtu − degree(v) u = v

σtu + 1 u is a neighbor of v

σtu otherwise

One of two outcomes occurs:

• No more chip firings are possible, that is there
exists some time t for which σtu < degree(u) for all
vertices u ∈ V (G). We call such instances terminal
and let σt be a terminal configuration.

• There are always possible firings. These instances
are called recurrent.

We say that an algorithm solves the sandpile pre-
diction problem if it decides whether or not an instance
is terminal and, if it is terminal, outputs the terminal
configuration. An important background result is the
following:

Theorem 1.1. [3] Any terminal instance of the sand-
pile prediction problem has a unique terminal configura-
tion. In particular, this terminal configuration is inde-
pendent of the order of firing.

In particular, any firing order will result in the same
number of firings.

For a graph G, consider a vertex r. Do a depth-first
search (DFS) from r. The DFS preorder for this DFS is
the order in which vertices are first visited by the DFS.

1.2 Summary of results Our main result is the
following:

Theorem 1.2. There is a O(n log5 n) time algorithm
which solves the sandpile prediction problem when the
input graph is a tree.

This is the first result that improves upon simu-
lation for trees. Simulation on a path, for example,
can take as long as Ω(n3) time. This result is within
a polylog(n) factor of the optimal runtime. Unlike in
the case of paths, no O(polylog(n)) depth parallel al-
gorithm can be found for sandpile prediction on trees
unless P = NC [7].

To illustrate the ideas, we start by showing the
following easier result in Section 2:

Theorem 1.3. There is an O(n) time algorithm which,
given a terminal configuration σ on a tree T , solves the
sandpile prediction instance (T, σ′), where σ′v = σv + 1
for some coordinate v and σ′u = σu for all u 6= v.
In particular, this gives an O(n2) time algorithm for
solving sandpile prediction on a tree.

In Section 3, we prove the following better amor-
tized runtime bound:

Lemma 1.1. The algorithm used to prove Theorem 1.3
solves the sandpile prediction problem in O(nD) time
if chips are dropped in DFS preorder with respect to an
arbitrary fixed vertex r, where D is the diameter of the
input tree T .

We use a stronger version of this result in Section 4
that characterizes the number of net firings that occur
on any set F ⊆ E(T). By limiting the set F to the set of
light edges of a heavy-light decomposition of T , we can
reduce the number of operations required to O(n log n).
We must design a data structure, though, that can skip
all rounds that involve operations outside of F . We do
this using an “exact data structure,” whose guarantees
are given in Lemma 4.1, and an “approximate data
structure,” whose guarantees are given in Lemma 4.2.
The exact data structure, given the next operation in
F , can update the configuration to reflect the result of
that operation. The approximate data structure finds
the next operation to occur in F .

1.3 Techniques Think of sandpile prediction as a
sequence of O(|E(G)|) chip drops onto a graph (as an
instance is recurrent if there are more than 2|E(G)| −
|V (G)| chips [3]). After dropping a chip, we perform
all chip firings required until the configuration becomes
terminal before adding the next chip. On paths,
Milterson [12] gave a simple procedure for computing
the terminal configuration after one chip drop in O(1)
time. If the chip is dropped on a vertex v with no chips,
nothing happens. If there was already a chip on v, then
the two nearest nodes with no chips gain one, and the
node v−z1−z2 becomes empty, where z1 and z2 are the
positions of the two nearest gaps. This simple algorithm

1116 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

is improved by carefully keeping track of an ordering of
twos and zeroes, in which case the ending configuration
of a path can be produced in O(log3 n) depth, O(n log n)
work [13].

We generalize the ideas of Milterson in the form of
critical components to obtain a O(nD) time algorithm
for general trees in Section 2, where D is the diameter of
the tree. A critical component is a connected subtree of
vertices v with degree(v)−1 chips. Since a tree contains
a unique path between any two vertices, the critical
component is exactly the set of nodes that is connected
to the dropped chip by a path of firing neighbors. The
algorithm executes chip firing in a sequence of rounds.
In each round, every fireable vertex is fired once. If
a node and all its neighbors fire in a single round,
its number of chips does not change. We exploit this
phenomena to obtain a faster simulation, which we call
round-based simulation. Say that an edge e has a net
firing if exactly one of its incident vertices fires during
that round. In a tree, these net firings always move the
boundary of the critical component inwards by one step.
We refer to the leaves of a critical component as those
nodes that fire across a net firing edge. The number of
rounds can be as high as Θ(n) on a path, so it is not
enough to simulate each round in O(n) time.

Milterson’s approach skips all but two rounds by
noticing that they consist of the critical component
moving in one step on either side. On trees, shortcutting
rounds is more complicated, even when chips are only
dropped on one vertex. This is because when one
executes many rounds, sections of the tree that remain
in the critical component for longer times experience
more rounds. We decompose a tree into paths by
using the heavy-light decomposition [16]. This results
in a decomposition of an arbitrary tree into a tree of
paths that has O(log n) diameter. Furthermore, on
rounds when there are no net-firings over light edges,
the critical component acts as a set of paths. Unlike
Milterson’s approach which does work only when chips
are dropped on the graph, we must also do work
when a chip crosses a light edge of the heavy-light
decomposition. We show in Lemma 3.1 that there are
only O(n log n) net firings over light edges.

Since only O(n log n) net firings occur over light
edges, we can obtain a near-linear time algorithm by
processing the result of each net firing over a light edge
in polylog(n) time. Ideally, we could design one data
structure that does this. This data structure would need
to do two tasks, each in polylog(n) time:

Figure 1: Long path p with left endpoint r and side
paths hanging off. Red, green, and blue vertices
represent vertices with 0, 1, and 2 chips respectively.
When an additional chip is dropped at r, all vertices
on the path p fire for 2 rounds before the gap on the
fifth side path arrives at p. The dotted cycle represents
the boundary of the critical component containing r.
When a chip is dropped at r, the critical component
moves in by one for two rounds and then skips from v2
to the parent of v3 due to a chip move from v3 to its
subcritical vertical neighbor.

Figure 2: The numbers that the data structure needs
to store for the graph given in Figure 1, indicating the
number of rounds before a net firing will occur across
the neighboring dashed edge.

1117 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

• Find the next round in which net firings over light
edges elapse.

• Process all changes to the tree that occur before
the next round in which a net firing over a light
edge elapses.

Unfortunately, it is difficult to design a single data
structure that accomplishes both of these tasks. For
example, think about the graph in Figure 1, which
consists of a long path p with side paths hanging off
of each vertex of p. We need a data structure that
keeps track of the numbers given in Figure 1, which
represent the number of rounds until a new chip is added
to each side path. The light edges of the decomposition
(which are dashed) connect p to each side path. Think
of the data structure as storing a number for each path
connected to p indicating the number of rounds that
need to elapse before the side path will accept a chip
from p. There are two challenges:

• The number of rounds that elapses on each side
path varies between two events. For example, only
1 is subtracted from the side path hanging off of
v1, since the critical component does not contain v1
after one round. 2 is subtracted from all other side
paths, since all other side paths are in the critical
component for two rounds.

• We need to be able to find the minimum of the side-
paths subject to the constraint that the side path is
still in the critical component. This minimum tells
us the first side path in which the boundary of the
critical component hits p. For example, in Figure
2, the minimum number is that stored at v3. This
matches the fact that the boundary of the critical
component in v3’s side path will hit p before any
other side path.

Both of these criteria are hard to design into a single
data structure like dynamic trees [16] because updating
different entries by distinct values can change the sorted
order of entries within a updated range. Instead, we use
the structure of our problem to allow for a relatively
small number of fake events. We deal with these issues
using two data structures: an exact data structure and
an approximate one. The exact data structure keeps
track of all chip locations, but is not able to find out
when the next event will occur. The approximate one
outputs candidate events and checks against the exact
data structure to make sure that they actually happen.
We charge each fake event on a side path q to a constant
factor reduction in the number of rounds that need to
elapse before the next real event. This ensures that the
total number of fake events is O(log n) times the number
of real events.

2 An O(n2) algorithm for trees using net firings

Simulating chip firing can take as long as Ω(n3) time,
even on paths. Simulation takes a long time in large
part because when a chip is dropped at a vertex v,
many chips can be fired in the direction of v. Ideally,
an algorithm for computing the terminal configuration
would just have to send chips away from v.

In trees, we can speed up a simulation in this way
if we focus on resolving the addition of one chip at a
time. A priori, adding one chip and simulating the result
could take as long as Ω(n2) time. We will compute the
results of the simulation in O(n) time. We start with
an important definition:

Definition 1. Consider a tree T . Call a vertex v ∈
V (T) critical if the number of chips σv on v is equal
to degree(v) − 1. Call v supercritical and subcritical if
σv > degree(v)− 1 or σv < degree(v)− 1 respectively.

Call a subtree T ′ ⊆ T critical if all of the vertices
in T ′ are critical.

We will show the following:

Theorem 2.1. Algorithm 1 finds the terminal config-
uration after dropping a chip onto a critical subtree
T ′ ⊆ T in O(|N(T ′) ∪ V (T ′)|) time.

There are two key ideas behind the proof:

• Every vertex of T ′ is critical at most once.

• No vertex outside of T ′ is ever critical.

In particular, one should think of simulation as
occuring in rounds. A round consists of firing all
supercritical vertices exactly once. Notice that the chip
counts on all vertices that are not on the boundary of T ′

(adjacent to some vertex outside of T ′) stay the same.
Intuitively, one can think of the rounds as bringing the
boundary inward one step at a time towards the vertex
at which the chip was dropped. Once this vertex is on
the boundary, firing stops. Without further ado, we
prove the theorem.

Proof. First, inductively show that the critical compo-
nent of v on round i consists of precisely the set of ver-
tices u with d′u ≥ i. For i = 1, vertices with d′u = 0
do not fire on round 1 because they can only have one
neighbor in the critical subtree T ′, so they can only re-
ceive one chip in round 1. This is not enough to make u
fire, because u is subcritical before round 1 takes place.
Vertices with d′u ≥ 1 do fire because they are connected
to the supercritical vertex v by a path of critical ver-
tices. This completes the proof that the round 1 critical
component is precisely the set of vertices u with d′u ≥ 1.

1118 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

Algorithm 1 DropChip(T, v, σ)

Input: tree T , vertex v ∈ V (T), configuration σ
Output: terminal configuration τ after adding a chip

to v
1: T ′ ← maximal critical subtree of T containing v
2: d ∈ RV (T ′) ← distances of each vertex u ∈ V (T ′)

to V (T)\V (T ′) in the directed tree T with edges
directed away from v

3: for all u ∈ V (T ′) do
4: d′u ← min ancestors w of u including u dw
5: end for
6: for all u ∈ V (T ′) do
7: τu ← (number of neighbors x with d′x ≥ d′u)

+ (number of neighbors x with d′x ≥ d′u + 1)
−1(u 6= v)

8: end for
9: return τ

Now, for i > 1 inductively assume that the vertices
u with d′u ≥ i− 1 are precisely the vertices that fire on
round i − 1. Any vertex u has an ancestor w, possibly
equal to u, with d′u = dw. In particular, w is adjacent
to some vertex x with dx = dw − 1, so d′x < d′u. If
d′u ≤ i − 1, then d′x ≤ i − 2 and x does not fire on
round i − 1 by the inductive hypothesis. w either does
not fire in round i − 1 or fires and loses a chip to x.
In particular, w (if w fires) or its parent (if w does not
fire) must be subcritical after round i− 1. Therefore, u
is not connected to v through a path of critical vertices
after round i− 1 and therefore does not fire on round i.

Now, suppose that d′u ≥ i. All neighbors x of
ancestors of u have d′x ≥ i − 1. By the inductive
hypothesis, they fire on round i−1. This means that the
number of chips on any vertex in the path from u to v
does not change, so they all remain critical. Therefore,
u fires in round i. This completes the proof that the
vertices with d′u ≥ i are precisely the vertices that fire
in round i.

We use this claim to analyze the algorithm. It
takes O(|V (N(T ′))|) time since it just does two passes
through N(T ′)∪T ′. It therefore suffices to show that it
produces the correct configuration. For any neighbor
y of u, |d′y − d′u| ≤ 1. On any round before round
d′u, u and all of its neighbors fire, which means that
u has degree(u) − 1(u 6= v) chips on it immediately
before round d′u. On round d′u, u loses chips to all of its
neighbors y with d′y = d′u− 1. On round d′u + 1, it gains
a chip from any neighbor y with d′y = d′u + 1. u does
not gain or lose chips after this round. This proves that
τu is correct.

3 Dropping chips takes O(nD) net firings on a
tree

We can get a better bound on the total number of chip
firings over all chip drops by noticing that each round
always moves chips away from the critical vertex that
a chip was dropped at. This observation immediately
leads to a proof that only O(nD) net firings occur over
the course of an arbitrary number of chip drops on
one fixed vertex, where D is the diameter of the tree.
One can also show that there are at most O(nD) net
firings when the chip drops occur in a DFS order. More
precisely, consider the following algorithm:

Algorithm 2 DFSDrop(T, γ)

Input: tree T , initial configuration γ
Output: terminal configuration σ
1: r ← arbitrary vertex which is chosen to be the root

of T
2: v1, v2, . . . , vn ← DFS preorder of the vertices of T

starting with v1 = r
3: σ ← all zeros vector on V (T)
4: for all i = 1 through n do
5: for all j = 1 through γvi do
6: σ ← DropChip(T, vi, σ)
7: end for
8: end for
9: return σ

Lemma 3.1. (restatement of Lemma 1.1) Let T
be a tree and F ⊆ E(T). Let D be the diameter of
the weighted tree T with all edges in F having length 1
and all edges outside of F having length 0. Then the
number of net firings across edges in F in Algorithm 2
is at most 5nD.

Proof. Direct all edges of T away from r and break up
the set of net firings into two categories: away from r
and towards r. Let the numbers of such moves be mu

and md respectively. First, note that mu ≤ md + nD
since D is an upper bound on the radius of T with
respect to r and F . It therefore suffices to bound md.

For an edge e ∈ F , let Te denote the subtree of T
rooted at the leafward endpoint of e. Notice that net
firings only enter Te when a chip is dropped outside
Te. Since the vis are a DFS preorder with respect
to r, there are indicies i and j for which V (T\Te) =
{v1, . . . , vi, vj , . . . , vn}.

During the firings of these vertices, net firings can
only enter Te. Therefore, only |V (Te)| net firings away
from r can occur across e when firing v1, . . . , vi. Te will
send back a chip for every chip inserted into Te, so there
can be no new net firings when it is full. Applying the

1119 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

same reasoning for vj , . . . , vn shows that there are no
more than 2|V (Te)| downward net firings across e over
the course of Algorithm 2.

Now, we sum up the lower bounds for all e ∈ F .
This bound is just

∑
e∈F

2|V (Te)| =
∑
e∈F

∑
v∈V (Te)

2

=
∑

v∈V (T)

∑
e∈F that are rootward of v

2

≤ 2nD

so md ≤ 2nD. This makes the total number of net
firings at most 5nD.

4 Accelerating the round-based algorithm
using data structures

For a balanced binary tree, D = O(log n) and F = T ,
so Algorithm 2 takes O(n log n) time. Unfortunately,
though, trees do not have to be anywhere near balanced.
Paths are the extreme case, in the sense that D = n.
Algorithm 1 takes linear time per chip drop on a path.
On a path, though, one can simulate chip additions in
O(1) time per chip drop. Ideally, we could combine
this path-based speedup with the fact that low-diameter
trees take little time.

In this section, we do this with fast data structures.
The data structures speed up the simulation of rounds,
with time corresponding to the round number. It helps
decompose a tree into paths and to view each path of the
path tree as a path with subtrees attached to vertices
on the path. We need a data structure that can do the
following:

• update elements in a subtree by “acceleration
terms” depending on distance

• find the minimum element with key less than some
value

The minimum element will correspond to the
branch that is closest to being able to take in another
chip. Call these times events. The acceleration terms
update the rest of the tree with what happened between
consecutive events.

Unfortunately, we are not able to implement both
of these operations efficiently. Luckily, though, we only
need to find approximate minima. We can charge the
fake events (events that are not true minima) to a
multiplicative reduction in the size of a branch. This
ensures that the amoritized runtime of finding the
minimum is O(polylogn).

We will separate the data structures required into
two separate data structures. The first will keep track of
the real position of the leaf of the current critical subtree
in each heavy path of the tree data structure. The
second data structure will efficiently return approximate
minima.

4.1 Decomposing a tree into paths We refer to
the decomposition of a general rooted tree into a tree
of heavy paths. The root of a heavy path, Root(p),
is the endpoint of p that is closer to the root of the
input tree. The parent of a path, denoted Parent(p),
is the path containing Root(p). Recall that the heavy-
light decomposition of a tree T [16], for every vertex u,
defines a heavy edge to a child x of u to be a edge for
which |V (Tx)| > |V (Tu)|/2, where Ty is the subtree of
T rooted at y. If a vertex u has no heavy edges, pick
one arbitrarily to be the heavy edge for u. All other
edges of T are called light edges. For two vertices a, b
on a heavy path p with b leafward of a, let b− a denote
the distance between a and b on the path (and also in
the tree).

Let F be the set of light edges of the heavy-light
decomposition of T . Notice that the diameter of the tree
T with respect to F is at most 2 log n. By Lemma 3.1,
the number of net firings across F is at most O(n log n).
Therefore, we just need to design a data structure that
only needs to do polylog(n) work each time a net firing
crosses an edge in F .

4.2 The exact data structure We now give a data
structure that will keep track of the exact positions of
the leaves of the current critical subtree. For each heavy
path q, AdvanceTime(dt) modifies the leaves of q’s child
paths using a hinge function, where the slope 1 part
of the hinge function has width dt. We now give the
interface of the data structure and defer proofs to the
appendix:

• SetupExact(T): Sets up the data structure on the
tree T with no chips.

• MoveChip(p1, p2): Inserts a chip from p1 into a child
heavy path p2 and updates all timers appropriately.
Assumes that the insertion is valid.

• AdvanceTime(dt): Advances time by dt rounds.
Assumes that no chips move across light edges
during the rounds in between.

• Reroot(s): Reroots the tree at a vertex s. Chips
are always added at the root of the current tree.

• LeafInPath(p): Returns the vertex in the heavy
path p that is the leaf of p in the current critical
subtree.

1120 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

Lemma 4.1. All functions in the exact data structure
(Algorithm 4) produce the correct outputs under the
assumption that MoveChip is called on the next correct
event. Moreover, all operations besides Setup and
DumpConfiguration take O(log2 n) worst case time,
with those operations taking O(n log n) time.

4.3 The approximate data structure We would
really like to add a subroutine to the exact data struc-
ture that computes the heavy path with leaf closest to
the its root. Unfortunately, adding accelerations to ver-
tices and being able to find minima seem incompatible.

Luckily, though, there is a technique in the data
structures literature that makes it possible to keep
track of minima after adding velocities (diffs). We
can approximate the effect of adding accelerations by a
step function of approximations to the correct amounts.
This data structure will always store multiplicative
overapproximations to the real amount of time that
has elapsed on a heavy path. This ensures that any
event that actually occurs will not be missed by the
approximate data structure. Using a step function
ensures that we can implement each approximate data
structure update using O(log n/δ) diff modifications.

Our approximate data structure has the following
interface:

• SetupApproximate(T, δ): sets up the approximate
data structure on the tree T with multiplicative
error (1 + δ)

• TryMove(): Tries the next possible move and does it
if it is valid. It picks the candidate move as follows.
The approximate data structure maintains values
np with the following np approximation property :

xp − LeafInPath(p) ≤ xp − np
≤ (1 + δ)(xp − LeafInPath(p))

where xp is the position of the leaf of the critical
component in p after the previous approximate
data structure update to the path p. TryMove

then finds the solution to the following optimization
problem:

min
paths p

np

s.t.

∀ ancestor paths q of p : np + dpq ≤ LeafInPath(q)

We now define dpq. Let upq denote the closest an-
cestor in T to Root(p) on q. If one replaces np with
LeafInPath(p) and dpq with dist(upq, Root(q)),
then this optimization finds the next net-firing light
edge. The constraint ensures that Root(p) is adja-
cent to a vertex in the current critical component
when a chip is added.

We do not actually define dpq this way, as solving
the resulting optimization problem becomes time
consuming. Instead, we solve the problem with
dpq equal to some value with the following dpq
approximation property :

xq − dist(upq, Root(q)) ≤ xq − dpq
≤ (1 + δ)(xq − dist(upq, Root(q)))

TryMove then checks the exact data structure to
assess whether or not a move is valid. When
TryMove processes a real move, it increments time
by np. Otherwise, it increments time by at least
np/(1 + δ).

TryMove() returns MOVE-EXISTS if and only if the
critical component is not empty.

• FastDropChip(v): Drops a new chip at v.

Lemma 4.2. Calls to TryMove and FastDropChip

maintain the guarantees and each take O(1
δ log3 n) time

per call in the worst case.

Algorithm 3 FastDFSDrop(T, γ)

Input: tree T , initial configuration γ
Output: terminal configuration σ
1: r ← arbitrary vertex of v which is chosen to be the

root of T
2: v1, v2, . . . , vn ← DFS preorder of the vertices of T

starting with v1 = r
3: σ ← all zeros vector on V (T)
4: A← SetupApproximate(T, r, 1/2)
5: for all i = 1 through n do
6: for all j = 1 through γvi do
7: FastDropChip(A, vi)
8: while TryMove(A) is MOVE-EXISTS do
9: end while

10: end for
11: end for
12: return DumpConfiguration(A)

4.4 The full algorithm We split the analysis of this
algorithm into two parts: correctness (Lemma 4.3) and

1121 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

runtime (Lemma 4.4). Lemma 4.4 depends on Lemma
4.3 but not vice versa. We defer the proof of 4.3 to the
appendix.

Lemma 4.3. FastDFSDrop computes the correct termi-
nal configuration for a tree.

At a high level, the correctness proof shows that 1)
all real events appear in the correct order and that 2)
the algorithm never increments time past the occurrence
of the next event. Both of these follow from the lower
bounds of the approximation property for np and both
bounds on the approximation property for dpq.

The desired runtime bound of O(n log5 n) follows
immediately from the fact that each TryMove call takes
O(log3 n) time given Lemma 4.4:

Lemma 4.4. FastDFSDrop makes O(n log2 n) calls to
TryMove and FastDropChip.

Proof. To bound the number of TryMove calls, it suffices
to bound the number of fake events that occur. We
charge each fake firing to a real firing and show that
each real firing has O(log n) fake firings charged to it.
We use the upper bound of the invariant on each np in
Lemma 4.2. Consider a path p along with the edge ep
from its parent. Real events happen when the size of p
is 0. We now show that between any two fake events
on ep, LeafInPath(p) decreases by a factor of 3. Let
superscripts of 0 and 1 on all variables denote the value
of the variable immediately before and after p is updated
due to a particular fake event over ep respectively. By
the np approximation property,

xp − n0p ≤ (1 + δ)(xp − LeafInPath0(p))

If time were incremented by np, then n1p = 0. Since
the feasibility constraint in TryMove is relaxed, it is
possible for n1p to be greater than 0. By Lemma 4.2
we know that time is advanced by at least n0p/(1 + δ),
which means that

LeafInPath1(p) ≤ LeafInPath0(p)−
n0p

1 + δ

≤ 1

1 + δ
(n0p + δxp)−

n0p
1 + δ

=
δ

1 + δ
xp

When a path p is visited in TryMove, it is updated to
reflect its current state in the exact data structure. As a
result, when a fake event occurs, xp will be reinitialized

to LeafInPath(p), which is at most δ/(1 + δ) times
its previous value. Since δ = 1

2 , xp decreases by a
factor of 3. xp only increases when real events happen.
Therefore, between any two real events, only log3 n fake
events can occur. Recall that there are O(n log n) real
events by Lemma 3.1. Therefore, there are at most
O(n log2 n) fake events, which translates to O(n log2 n)
TryMove calls.

Acknowledgements We thank Nikhil Srivastava
for introducing this problem to us and for many helpful
discussions. We also thank Hannah Cairns, Xiang
Cheng, Alex Rusciano, and anonymous reviewers for
helpful edits.

References

[1] John Horton; Guy R. K. Berlekamp, E. R.; Conway.
Winning Ways for your Mathematical Plays. A K
Peters Ltd., 2001-2004.

[2] N Biggs. Algebraic potential theory on graphs. Bul-
letin of the London Mathematical Society, 29(6):641–
682, November 1997.

[3] Bjorner, Lovasz, and Shor. Chip-firing games on
graphs. European Journal of Combinatorics, 12:283–
291, 1991.

[4] P. Diaconis and W. Fulton. A growth model, a
game, an algebra, lagrange inversion, and character-
istic classes. Rend. Sem. Mat. Univ. Politec. Torino,
49:95119, 1991.

[5] M. Bramson G. F. Lawler and D. Griffeath. In-
ternal diffusion limited aggregation. Ann. Probab.,
20:21172140, 1992.

[6] A. Gabrielov. Abelian avalanches and tutte polynomi-
als. Phys. Rev. A, 195:253–274, 1993.

[7] Goles and Margenstern. Sand pile as a universal
computer. International Journal of Modern Physics,
7(2):113–122, 1996.

[8] Holroyd, Levine, Mészaros, Peres, Propp, and Wil-
son. Chip-firing and rotor routing on directed graphs.
Progress in Probability, 60:331–364, 2008.

[9] Kelner and Madry. Faster generation of random
spanning trees. FOCS, pages 13–21, 2009.

[10] Philip N Klein and Shay Moses. Optimization Algo-
rithms for Planar Graphs.

[11] Aleksander Madry, Damian Straszak, and Jakub Tar-
nawski. Fast generation of random spanning trees and
the effective resistance metric. In Proceedings of the
Twenty-Sixth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA 2015, San Diego, CA, USA,
January 4-6, 2015, pages 2019–2036, 2015.

[12] Milterson. The computational complexity of one-
dimensional sandpiles. Theory Computer Systems,
41:119–125, 2007.

[13] Moore and Nilsson. The computational complexity of
sandpiles. Journal of Statistical Physics, 96:205–224,
1999.

1122 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

[14] C Moore and J Machta. Internal diffusion-limited ag-
gregation: Parallel algorithms and complexity. Journal
of Statistical Physics, 99:661–690, 2000.

[15] C. Tang P. Bak and K. Wisenfeld. Self-organized
criticality. Phys. Rev. A, 3:364–374, 1988.

[16] Sleator and Tarjan. A data structure for dynamic trees.
Journal of Computer and System Sciences, 26(3):362–
391, 1983.

[17] Alan Turing. On computable numbers, with an ap-
plication to the entscheidungsproblem. Proceedings of
the London Mathematical Society, Series, 42:230–265,
1937.

[18] A. Dhar V. B. Priezzhev, D. Dhar and S. Krishna-
murthy. Eulerian walkers as a model of self-organised
criticality. Phys. Rev. Lett., 77:50795082, 1996.

[19] A. Sinclair Y. Rabani and R. Wanka. Local divergence
of markov chains and the analysis of iterative load-
balancing schemes. In Proceedings of the IEEE Symp.
on Foundations of Computer Science, page 694705,
1998.

A Exact data structure implementation and
correctness

We now give a data structure that proves Lemma 4.1.
The key idea is that it suffices to keep track of how many
rounds (how much time) have elapsed on each heavy
path. Associate a time zone with each heavy path p.
The time zone of a heavy path is an object that stores
the following five items:

• An integer rp indicating the number of rounds in
which the critical subtree has intersected the heavy
path p.

• An integer sp indicating the previous round number
in which a chip was added to this heavy path.

• An integer tp indicating the location of the root-
most subcritical vertex immediately after round
number sp, or ∞ if the entire path is critical.

• A stack of subcritical vertices Sp excluding
LeafInPath(p) + 1 with the order of vertices from
top to bottom being from root to leaf of the heavy
path. Locations are specified by distances from
Root(p).

• A data structure of accelerations Ap for the vertices
on p.

The data structure represents sp, tp, and Sp explic-
itly, while it represents rp in terms of a sequence of diffs
rp−rParent(p), which we call velocities. For a path p, the
diff rp − rParent(p) is stored implicitly in the data struc-

ture AParent(p). Between two firings across light edges,
for a path q, the diffs rq′ − rq for children q′ of q change

Figure 3: The updates to diffs on the child heavy path
p of {r} that occur before the first net firing in the
example of Figures 1 and 2. These updates reflect the
fact that all sidepaths adjacent to vertices rootward of
v1 experience the same number of rounds as r before
the net firing from v2 to its sidepath. The 0,-1,-2 part
of the update is handled using -1 and +1 accelerations
on the neighbors of v1.

by a piecewise linear function that consists of two con-
stant parts with a slope -1 part in between. This slope
-1 part arises from the fact that time elapses in the path
q′ only when LeafInPath(q) is leafward of the neighbor
of q′ in q, and LeafInPath(q) moves towards the root
between two updates. These updates can be made using
accelerations of +1 and -1 at the starting and stopping
points of LeafInPath(q) respectively. Figure 3 gives an
example of this.

rp can be computed by summing up the diffs in
Aq for all ancestors q. The current leaf of the critical
subtree in p is tp − (rp − sp) − 1. Therefore, if we
can dynamically maintain rp, we can also maintain the
leaves of the critical subtree after each round.

The following data structure for the accelerations
can be implemented using diffs on the internal nodes of
a binary tree. It is given in Appendix D.

• Setup(p, r): sets up an acceleration data structure
for a set of vertices on a heavy path p with root r

• ChangeAcceleration(v,∆): changes the accelera-
tion av of a vertex v ∈ p by ∆

• ChangeVelocity(v,∆): changes the velocity vv of
a vertex v by ∆

1123 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

• Velocity(u): outputs the current velocity of
u due to the accelerations in the current data
structure. More precisely, the velocity of u is∑
x rootward of u(axd(x, u) + vx).

• Reroot(s): reroots the data structure at a vertex
s ∈ V (p)

We now give an explicit construction of the Lemma
4.1 data structure given the above data structure:

Algorithm 4 Exact data structure part 1

1: tree T of heavy paths
2: a vertex r in the tree
3: function SetupExact(T ′, r′)

Input: rooted tree T ′ with root r′

4: r ← r′

5: T ← HeavyPaths(T ′, r)
6: for all heavy path node p ∈ T in BFS order do
7: sp ← 0
8: tp ← Root(p)
9: Sp ← vertices of the path in sorted order

with the rootmost endpoint on top, with degree(v)−
1 copies of each vertex v in the stack and Root(p)
popped off

10: Ap ← Setup(p)
11: ChangeAcceleration(Ap, Root(p),+1)
12: end for
13: end function

14: function R(p)
Input: heavy path p
Output: current value of rp
15: if p is the root heavy path {r} then
16: return Velocity(A{r}, r)
17: else
18: q ← Parent(p)
19: lq ← LeafInPath(q)

. lq acts as a moving -1 acceleration term,
whose effect is given by z

20: y ← vertex of q adjacent to Root(p)
21: z ← max(0, y − lq)
22: return R(q) + Velocity(Aq, y)− z

. LeafInPath and R are computed with
memoization

23: end if
24: end function

25: function LeafInPath(p)
Input: heavy path p
Output: current position of the leaf of the critical sub-

tree, with Root(p)−1 = −1 denoting no intersection
with the critical subtree

26: return tp − (R(p)− sp)− 1
27: end function

28: function S(p)
29: return sp
30: end function

31: function T(p)
32: return tp
33: end function

34: function AdvanceTime(dt)
35: ChangeVelocity(A{r}, r, dt)
36: end function

1124 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

Algorithm 5 Exact data structure part 2

1: function MoveChip(p1, p2)
Input: heavy path p1 and a child heavy path p2
2: q1, q2, . . . , qk = p1 ← the path in T from the root

heavy path to p1
. calculates amount of time between previous

event and current event in q1’s time zone
3: dt← LeafInPath(p2) + 1
4: AdvanceTime(dt)

. other changes
5: ChangeAcceleration(Ap2 , Root(p2)− 1,−1)
6: sp2 ← R(p2)

. sets tp2 to be ∞ if nothing is in the stack
7: tp2 ← Pop(Sp2)
8: ChangeAcceleration(Ap2 , tp2 − 1,+1)
9: if p1 is not the trivial root path of T then

10: lp1 ← LeafInPath(p1)
11: sp1 ← R(p1)
12: tp1 ← neighbor of Root(p2) in p1
13: Push(Sp1 , lp1)
14: ChangeAcceleration(Ap1 , lp1 ,−1)
15: ChangeAcceleration(Ap1 , tp1 − 1,+1)
16: end if
17: end function

Lemma A.1. (restatement of Lemma 4.1)
Algorithm 4 produces the correct outputs under the
assumption that MoveChip is called on the next correct
event. Moreover, Setup and DumpConfiguration take
O(n log n) time and all other operations take O(log2 n)
time.

Proof. We focus on correctness, as the runtime follows
from the fact that the depth of the tree is O(log n) and
the fact that the low-level data structure has runtime
O(log n) per operation. Correctness relies on the fact
that between two events in a subtree, the leaf moves
towards the root at a rate of 1 step per iteration. It
is also important to think of the leaf as a temporary
acceleration of -1.

We prove the correctness by induction on the num-
ber of MoveChip calls. If there have been no move chip
calls, only SetupExact has been called. No chips are
present, so no time has elapsed and all initial values
are correct. LeafInPath will output -1 for each path,
which is correct because there are no critical vertices in
any path. R will output 0 for every path, which is also
correct because no time has elapsed anywhere.

Suppose inductively that the data structure is cor-
rect at some state and do a MoveChip(p1, p2) call. We
can assume that this is a valid MoveChip call. We ac-
count for the global passage of time at r by dt rounds
with the AdvanceTime call in MoveChip. After account-
ing for this, the leaf changes location in p1 and p2 only.
The ChangeAcceleration calls on p2 make the tempo-
rary acceleration of -1 on the old leaf (Root(p2) − 1)
permanent and counteract the new temporary acceler-
ation of -1 on the new leaf (tp2 − 1). The third and
fourth ChangeAcceleration calls reflect the fact that
LeafInPath moved from `p1 to tp1 . This completes the
proof that the velocity data structures, when combined
with a -1 acceleration from the leaf, compute the correct
differences between the rp1 − rp2 for every parent-child
pair (p1, p2).

We now show that our updates to Sp1 and Sp2 are
correct. Since a chip is added to p2, its first gap (at
Root(p2)) is filled, which makes the next value of tp2
the top of the stack. Similarly, p1 gained a fixed gap at
lp1 . This shows that stack updates are correct.

Now, we just need to show that R(p) and
LeafInPath compute the correct values after this
MoveChip call. R(p) is correct because the algorithm
is representing it as a sum of the velocities of the an-
cestor paths along with -1 accelerations from the an-
cestral LeafInPaths. LeafInPath is correct given the
correctness of R(p) because the leaf location after round
sp is tp − 1. Therefore, the correctness of R(p) and
LeafInPath(p) follows from the correctness of the ve-
locity data structure. This completes the inductive step

1125 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

Algorithm 6 Exact data structure part 3

1: function Reroot(s)
Input: new root s

. Undo current root choice r
2: if r broke up a heavy path in the initial heavy

path decomposition into two paths p1 and p2, with
p1 closer to s then

3: merge p1 and p2 back into a single path p
4: x← closest endpoint of p1 to s
5: t′p1 ← LeafInPath(p1)
6: t′p2 ← LeafInPath(p2)
7: Reroot(Ap1 , x)
8: rx ← R(p1)

. rx = time elapsed so far at vertex x

9: Ap ← Ap2 appended to Ap1 . Do this by
connecting the binary trees for Ap1 and Ap2 to
a common root vertex with edge weights 0 and
distance(r, x) respectively

10: Push(Sp1 , t′p1)
11: Push(Sp2 , t′p2)
12: Reverse(Sp1)
13: Sp ← Sp1 pushed onto Sp2

14: tp ← Pop(Sp)
15: sp ← rx
16: end if

. Pick new root choice s
17: q ← the heavy path containing s
18: q1, q2 ← the paths obtained by removing an edge

adjacent to s from q
19: reverse Aq1 and split the stack Sq into two stacks

Sq1 and Sq2 with one reversed in O(1) time
20: assign tq1 and tq2 based on the top element of

the new stacks
21: assign sq1 and sq2 to the current time

. Fix all paths a between p and q in T
22: reverse Aa

23: push LeafInPath(a) onto Sa, reverse the stack,
and pop the top element to get ta

24: assign sa to the current time
25: r ← s
26: end function

27: function DumpConfiguration
28: for all vertex v ∈ T ′ do
29: σv ← degree(v)−1− the number of copies of

v in Sp∪{LeafInPath(p)+1}, where p is the heavy
path containing v

30: end for
31: return σ
32: end function

and completes the proof that all methods continue out-
putting the correct value after each MoveChip call.

Now, we reason about each Reroot call. Notice
that only O(log n) paths are altered and that each
stack reversal/split/low-level data structure modifica-
tion can be implemented in O(log n) time, for a total
of O(log2 n). Correctness follows from the fact that no
R(b) values change for any heavy path b that is not on
the path between r and s.

Finally, we show the correctness of
DumpConfiguration. It suffices to notice that a
chip is added to or removed from a vertex during
an event when it is popped off or pushed onto its
corresponding stack respectively. The only other gaps
are the ones that form during nonevents, which are
accounted for by LeafInPath(p) + 1 (the leafward
neighbor of LeafInPath(p)).

B Approximate data structure implementation
and correctness

Let L = O(log n) be the depth of the heavy path
decomposition. Our data structure keeps track of
the exact data structure E, a diff-minimization data
structure F , and the following information for each
heavy path p:

• xp: the position of the leaf on the previous approx-
imate data structure update to p

• yp: the time of the previous update according to
p’s time zone

• np: a number associated with p that has the
following property after any update to p or any
descendant of p:

xp−LeafInPath(p) ≤ xp−np ≤ (1+δ)(xp−LeafInPath(p))

• mp: the minimum of all descendant np values with
the amount of time that has elapsed subtracted off.

np and mp are stored implicitly in the data struc-
ture F p.

• pp: the heavy path q for which mq = nq

• F p: a data structure that allows for diffs and
minimization. This data structure implicitly stores
the mp values for all children

Each F p has the following interface, which can be
implemented using a typical diff tree data structure:

• Setup(p, r): initializes a data structure based on p
with root r

1126 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

• ChangeVelocity(u, v,∆): changes the value of all
vertices in the path p between u and v by ∆

• ChangeValue(v,D): sets the value of vertex v to D

• GetMinInRange(u, v): returns the minimum be-
tween vertices u and v

• Reroot(s): reroots the entire data structure at a
vertex s

We now implement the desired data structure:

Algorithm 7 Approximate data structure part 1

1: tree T of heavy paths
2: accuracy parameter δ
3: exact data structure E
4: diff data structure F p for each path heavy path p
5: exact location of the previous leaf xp when p was

previously updated
6: previous update times yp
7: function SetupApproximate(T ′, r′, δ)
8: E ← SetupExact(T ′, r′)
9: T ← same heavy paths decomposition as in E

10: set everything else to 0
11: setup all F ps with root at the rootmost vertex

of p
12: end function

13: function ApxAccelerate(p, u, v)
. 1 + δ-overapproximate the the effect

of putting -1 acceleration on s and +1 acceleration
of t using a O(log n/δ)-sparse step function for the
velocities

14: k ← blog1+δ dist(u, v)c
15: v0 ← v
16: vk ← u
17: for all i ∈ 1, . . . , k do
18: vi ← vertex on p with distance b(1+δ)ic from

v if i 6= k
19: ChangeVelocity(F p, vi, vi−1, b(1 + δ)i+1c)
20: end for
21: ChangeVelocity(F p, Root(p), u, d(u, v))
22: end function

23: function GetMinToPropagate(p)
. Returns minimum of the branches of p

subject to a relaxation of the constraint (branch +
distance) ≤ LeafInPath(p)

24: v0 ← LeafInPath(p)
25: m← v0
26: pmin ← p
27: for all i = 1, 2 . . . , k = blog1+δ d(v0, Root(p))c

do
28: vi ← rootward vertex on p with distance
b(1 + δ)ic from v0 if i 6= k

29: (q,mi)← GetMinInRange(F p, vi, vi−1)
. exact version of the following constraint

would replace vi with the neighbor of Root(q)
30: if mi + dist(vi, Root(p)) ≤ dist(v0, Root(p))

then
31: m← min(m,mi)
32: update pmin if m changed to q
33: end if
34: end for
35: return (m, pmin)
36: end function

1127 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

We now prove the correctness and bound the run-
time of this data structure:

Lemma B.1. (restatement of Lemma 4.2)
TryMove and FastDropChip are correct and each
take O(1

δ log3 n) worst-case time.

Proof. The runtimes of each method follow from the
the fact that operations in the exact data structure are
called O(log n) times per TryMove and FastDropChip

call and that data structures are called O(log2 n) times.
It is also very important that the acceleration updates
are done using O(1

δ log n) velocity changes. For the
remainder of the proof, we focus on correctness.

First, we discuss TryMove. The return value is cor-
rect because events happen until the root is subcritical.
We need to show that all variables are correctly main-
tained after each TryMove call. We start by showing
that when a path p is visited, np satisfies the desired
invariant whenever np is ”seen” by the algorithm; that
is whenever p = px for some visited path x. Recall that
each F p represents the nqs for all child paths q of p.
First, we show the left hand side inequality; that is

xp − LeafInPath(p) ≤ xp − np
Suppose that np is seen as mq1 for some ancestor

q1 of p. Let q0 = Parent(q1). Whenever p is
visited, xp and np are both reset to LeafInParent(p)
if np is the minimum, because xp is explicitly set to
that in TryMove and np is set to it implicitly (see
m ← v0 in GetMinToPropagate). When q0 is visited,
the value mq1 is decremented in ApxAccelerate by
an overapproximation to the true amount, since the
true amount is bounded above by b(1 + δ)i+1c. This
completes the proof of the desired inequality.

To show that

xp − np ≤ (1 + δ)(xp − LeafInPath(p))

it suffices to notice that the the change in
ApxAccelerate is at most a (1 + δ)-overapproximation
to the true change. The correctness of all other variables
follow from their resetting throughout the code.

The correctness proof for FastDropChip is similar
to the correctness proof for Reroot in the exact data
structure, because dropping a chip is equivalent to
rerooting and moving a chip from the root to the child
path.

C Proof of Lemma 4.3

Proof. Let F be the set of light edges in the heavy-
light decomposition. First, we show that FastDFSDrop

computes the correct final configuration. To do this, it

Algorithm 8 Approximate data structure part 2

1: function TryMove()
2: if r is not supercritical then
3: return MOVE-DOES-NOT-EXIST

4: end if
5: dt← GetMinInRange(F r, r, r)
6: p← pr
7: if dt = LeafInPath(E, p) and Root(p) is in the

critical subtree after dt − 1 rounds (which requires
LeafInPath calls on all ancestors) then

. real move
8: MoveChip(E, Parent(p), p)
9: ApxAccelerate(p, Root(p)− 1, xp) .

accelerate based on the leaf position of -1 before
adding a chip to the path

10: else if Root(p) is not in the critical subtree after
dt− 1 rounds then

. fake move that was not
actually in the critical subtree because of the fact
that GetMinToPropagate relaxes the constraint for
being in the critical subtree

11: dt← dt/(1 + δ)
12: AdvanceTime(E, dt)
13: ApxAccelerate(p, LeafInPath(E, p), xp)
14: else

. feasible fake move due to
underapproximation of the location of the leaf of p

15: AdvanceTime(E, dt)
16: ApxAccelerate(p, LeafInPath(E, p), xp)
17: end if

. recalculate the minimum for p
18: p0 = r, p1, . . . , pk+1 = p← path to p in T
19: (Dpk+1

, ppk+1
)← GetMinToPropagate(p)

20: xp ← LeafInPath(E, p)
21: yp ← R(E, p)

. update rest of the approximate structure to
reflect time changes

22: for all heavy path pi in decreasing order do
23: z ← the vertex ypi distance away from xpi

towards the root
24: ApxAccelerate(pi, z, xpi)
25: ChangeValue(F pi , pi+1, Dpi+1)
26: (Dpi , ppi)← GetMinToPropagate(pi)
27: xpi ← LeafInPath(E, pi)
28: ypi ← R(E, pi)
29: end for
30: return MOVE-EXISTS

31: end function

1128 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

Algorithm 9 Approximate data structure part 3

function FastDropChip(s)
update all paths between r and s using

ApxAccelerate and GetMinToPropagate

reverse all data structures F p for those paths
Reroot(E, s)
MoveChip(s, child path of s)

end function

function DumpConfiguration()
return DumpConfiguration(E)

end function

suffices to notice that TryMove executes only the chip
moves that happen across F .

Notice that no invalid chip move occurs because
TryMove checks the validity of any candidate move using
the exact data structure. If dt = LeafInPath(p) and
Root(p) is in the critical subtree after dt − 1 rounds,
then the move from Parent(p) to p is valid for the
following reasons. First, Root(p) will no longer be in
the critical subtree after dt rounds. Second, Root(p)
is adjacent to a vertex in the critical subtree after dt
rounds thanks to the second condition. This means that
a chip will move across the light edge connecting Root(p)
to its parent in T ′. Therefore, these conditions suffice to
ensure that no fake event triggers the first if statement
in TryMove, which is the only place in which the exact
data structure is changed. Each fake event violates one
of these conditions, so the if statement is triggered if
and only if an event is real.

We now show that all real events occur in the right
order. It suffices to show this inductively. Assume
that real event i just happened. By Lemma 4.2, all
mp values are underapproximations to their true value.
By the first condition of the if statement of TryMove,
real events will satisfy equality, that is np = dt =
LeafInPath(p). Therefore, no real event can occur
before real event i+1. It now suffices to show that each
real event occurs. To do this, we need to show that
each real event satisfies the relaxed feasibility condition
in the comment of GetMinToPropagate. For a feasible
event on a path q, notice that

LeafInPath(q) + dist(Root(Parent(q)), Root(q)− 1) ≤
LeafInPath(Parent(q))

because the leaf of q needs to be a part of
the critical subtree when the event for q trig-
gers. Since d(Root(Parent(q)), Root(q) − 1) ≥
d(Root(Parent(q)), vi), the condition given in
GetMinToPropagate is a relaxation of the true

condition and any real event will be captured by the
minimization in GetMinToPropagate.

Finally, we need to show that when a (fake or real)
event for q triggers, we need to ensure that the leaf on
any ancestor path does not pass rootward of it. This is
why dt ← dt/(1 + δ) in the else if of TryMove. The
relaxed feasibility constraint has the property that for
any event triggered on a path q, and any ancestor q′:

dist(Root(q), LeafInPath(q)) ≤ dist(vi, LeafInPath(q′))

≤ (1 + δ)dist(Root(Parent(q)), LeafInPath(q′))

when combined with the assumption that q is in-
deed a minimizer over Parent(q). Therefore, decre-
menting time by dist(x, LeafInPath(q))/(1+δ) ensures
that q will always be in the critical subtree when an
event happens. This completes the proof of correctness.

D Low-level data structures

D.1 Diff data structure with minimization This
data structure is essentially the same as the one given
in Chapter 17 of [10], but we describe it here for
completeness. It keeps a balanced binary tree with each
leaf node of the tree representing a vertex on the path p
supplied to Setup(p, r). Each node stores the following
information:

• ∆v: xv − xparent(v), where xv is the value of vertex
v, which is also GetValue(v)

• ∆ minv: minv −xv, where minv is the minimum
value of any vertex in the subtree rooted at v.

• v.(start, end): specifies the interval of vertices in
the subtree rooted at this node

• v.(left, right): the two children of v

The minimum of a subtree can be defined re-
cursively using minv = min(xv,minv.left,minv.right).
Subtracting xv from both sides shows that ∆ minv =
min(0,∆ minv.left +∆v.left,∆ minv.right +∆v.right)
which allows us to compute ∆ minv recursively solely
in terms of the ∆s. This allows us to do each operation
in O(log n) time.

D.2 Heavy light decomposition Here, we imple-
ment the HeavyPaths function. This function takes as
input a tree T and a root r and outputs a tree T ′, where
the vertices of T ′ are paths in T and edges in T ′ are
edges in T . r is part of a one vertex path.

1129 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

Algorithm 10 Acceleration data structure

1: function Setup(p, s)
2: mid ← (length of p)/2
3: if mid is 0 then
4: return makeTree(

(dist,(acceleration,velocity)) is (p[0],(0,0)))
5: end if
6: t ← makeTree((key, (acc, vel)) is (p[0], (0,0))

)
7: if mid > 0 then
8: t.left ← Setup(p[:mid-1],s)
9: t.right ← Setup(p[mid:],r)

10: end if
11: return t
12: end function
13: function ChangeAcceleration(v,∆)
14: Node c ← t.find(v) . in the bottom level of the

tree
15: while c.parent.key is v do . v is leftmost node

of some tree
16: c ← c.parent
17: end while
18: c.changeAcceleration(∆)
19: while c is not t.root do
20: while c.key is not c.parent.key do . go up

and left as far as possible
21: c ← c.parent
22: end while
23: while c.key is c.parent.key do . go up and

right one at a time
24: c ← c.parent
25: c.right.changeAcceleration(∆)
26: c.right.changeVelocity(∆· (c.right.key-v))
27: end while
28: end while
29: end function
30: function ChangeVelocity(v,∆)
31: Node c ← t.find(v)
32: c.changeVelocity(∆)
33: end function
34: function Velocity(v)
35: return t.find(v).getVelocity()
36: end function
37: function Reroot(s)
38: Move root to the opposite side
39: Flip the sign of all accelerations
40: end function

Algorithm 11 Diffs with minimization

1: function Setup(p.r)
Input: r always represents one side of p
2: mid ← (length of p)/2
3: t ← makeTree(((start,end),(∆v,∆minv)) =

((p.first,p.last),(0,0)))
4: if mid > 0 then
5: t.left ← Setup(p[:mid])
6: t.right ← Setup(p[mid+1:])
7: end if
8: return t
9: end function

10: function GetValue(u)
11: return

∑
ancestors a of (u)

∆a

12: end function
13: function ChangeValue(u, x)
14: ChangeVelocity(u, u, x− GetValue(u))
15: end function
16: function Decompose(u, v)
17: if u is v then return t.findNode((u,u))
18: (u,w) ← root of largest subtree starting at u

where w ≤ v
19: return (u,w), Decompose((w,v))
20: end if
21: end function
22: function ChangeVelocity(u, v, d)
23: dec ← Decompose(u,v)
24: for all root nodes r in dec do
25: ∆r ← ∆r + d
26: for all ancestors v of r do
27: ∆minv ← min(0,∆v.left +

∆minv.left,∆v.right + ∆minv.right)
28: end for
29: end for
30: end function
31: function GetMinInRange(u, v)
32: dec ← Decompose(u,v)
33: return min

nodes r in dec
(GetValue(r) + ∆minr)

34: end function
35: function Reroot(s) . doesn’t need to

do anything, as diffs are always applied to a proper
subpath

36: end function

1130 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

Algorithm 12 Heavy light decomposition of an r-
rooted tree T
1: function HeavyPathsImpl(T, r, counts)
2: if V (T) = {r} then
3: return T
4: end if
5: x← the child of of r with the most descendants
6: T ′ ← (∅, ∅)
7: for all child y of r do
8: Ty ← subtree of T rooted at y
9: T ′y ← HeavyPathsImpl(Ty, y)

10: if x = y then
11: p← root (heavy path) of T ′x
12: q ← (r, x) concatenated to p
13: V (T ′)← V (T ′) ∪ V (T ′x)\{p} ∪ {q}
14: E(T ′)← E(T ′) ∪ E(T ′x)
15: else
16: V (T ′)← V (T ′) ∪ V (T ′y)
17: E(T ′)← E(T ′) ∪ E(T ′y) ∪ {(r, y)}
18: end if
19: end for
20: return T ′

21: end function

22: function HeavyPaths(T, r)
23: counts ← array of sizes of subtrees of vertices of

T
24: T ′ ← HeavyPathsImpl(T, r)
25: p← path in T ′ rooted at r
26: er ← edge in p incident with r
27: q ← p\{r}
28: return (V (T ′)\{p} ∪ {q, {r}}, E(T ′) ∪ er)
29: end function

1131 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

